Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.459
Filtrar
1.
J Biol Chem ; 300(1): 105528, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043794

RESUMO

Parasitic flatworms cause various clinical and veterinary infections that impart a huge burden worldwide. The most clinically impactful infection is schistosomiasis, a neglected tropical disease caused by parasitic blood flukes. Schistosomiasis is treated with praziquantel (PZQ), an old drug introduced over 40 years ago. New drugs are urgently needed, as while PZQ is broadly effective it suffers from several limitations including poor efficacy against juvenile worms, which may prevent it from being completely curative. An old compound that retains efficacy against juvenile worms is the benzodiazepine meclonazepam (MCLZ). However, host side effects caused by benzodiazepines preclude development of MCLZ as a drug and MCLZ lacks an identified parasite target to catalyze rational drug design for engineering out human host activity. Here, we identify a transient receptor potential ion channel of the melastatin subfamily, named TRPMMCLZ, as a parasite target of MCLZ. MCLZ potently activates Schistosoma mansoni TRPMMCLZ through engagement of a binding pocket within the voltage-sensor-like domain of the ion channel to cause worm paralysis, tissue depolarization, and surface damage. TRPMMCLZ reproduces all known features of MCLZ action on schistosomes, including a lower activity versus Schistosoma japonicum, which is explained by a polymorphism within this voltage-sensor-like domain-binding pocket. TRPMMCLZ is distinct from the TRP channel targeted by PZQ (TRPMPZQ), with both anthelmintic chemotypes targeting unique parasite TRPM paralogs. This advances TRPMMCLZ as a novel druggable target that could circumvent any target-based resistance emerging in response to current mass drug administration campaigns centered on PZQ.


Assuntos
Anti-Helmínticos , Clonazepam , Esquistossomose mansoni , Canais de Cátion TRPM , Animais , Humanos , Anti-Helmínticos/farmacologia , Benzodiazepinas/farmacologia , Benzodiazepinonas/farmacologia , Clonazepam/análogos & derivados , Clonazepam/farmacologia , Praziquantel/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/tratamento farmacológico , Canais de Cátion TRPM/agonistas
2.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615638

RESUMO

Inhibitor of Apoptosis Proteins (IAPs) are validated targets for cancer therapy, and the deregulation of their activities within the NF-κB pathway correlates with chemoresistance events, even after treatment with IAPs-antagonists in the clinic (Smac-mimetics). The molecule FC2 was identified as a NF-κB pathway modulator in MDA-MB-231 adenocarcinoma cancer cells after virtual screening of the Chembridge library against the Baculoviral IAP Repeat 1 (BIR1) domain of cIAP2 and XIAP. An improved cytotoxic effect is observed when FC2 is combined with Smac-mimetics or with the cytokine Tumor Necrosis Factor (TNF). Here, we propose a library of 22 derivatives of FC2, whose scaffold was rationally modified starting from the position identified as R1. The cytotoxic effect of FC2 derivatives was evaluated in MDA-MB-231 and binding to the cIAP2- and XIAP-BIR1 domains was assessed in fluorescence-based techniques and virtual docking. Among 22 derivatives, 4m and 4p display improved efficacy/potency in MDA-MB-231 cells and low micromolar binding affinity vs the target proteins. Two additional candidates (4b and 4u) display promising cytotoxic effects in combination with TNF, suggesting the connection between this class of molecules and the NF-κB pathway. These results provide the rationale for further FC2 modifications and the design of novel IAP-targeting candidates supporting known therapies.


Assuntos
Antineoplásicos , Neoplasias , NF-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligação Proteica , Proteínas Inibidoras de Apoptose/metabolismo , Antineoplásicos/farmacologia , Benzodiazepinonas/farmacologia , Apoptose , Proteínas Mitocondriais/metabolismo
3.
FASEB J ; 36(8): e22454, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35839067

RESUMO

The peripheral benzodiazepine receptor (TSPO/PBR) is highly conserved among different species but with perplexing biochemical functions. Multiple ligands of TSPO show commendable regulatory activities in lots of biological functions, such as neuro-protection, cholesterol transport, and so on. These researches support that TSPO may be a potential target for disease treatment and drug development. Previous studies have shown that its ligands benzodiazepines show a satisfactory effect on melanogenic promotion. However, the potential application of TSPO in drug development for pigmentary disorder needs further investigation. In this study, we confirmed the melanogenesis induction of TSPO ligand, Ro5-4864 in mouse melanoma cell lines, human skin tissue, and zebrafish embryos by inducing melanin synthesis and melanosome transport. Molecular genetics and pharmacological studies showed that TSPO deficiency did not affect melanin production in B16F10 cells and zebrafish embryos, nor did it affect the melanin promotion effect of Ro5-4864. Whether or not TSPO exists, the expression of lots of melanogenesis-related proteins, such as TYR, TRP-1, DCT, Mlph, and Rab27 was upregulated with the Ro5-4864 administration. These results indicated that Ro5-4864 induces melanogenesis in a TSPO-independent manner, which is inconsistent with previous research. This research is a reminder that we need to be very careful during target validation in drug development.


Assuntos
Melaninas , Receptores de GABA , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Benzodiazepinonas/farmacologia , Benzodiazepinonas/uso terapêutico , Humanos , Ligantes , Melaninas/biossíntese , Melaninas/metabolismo , Melanoma , Camundongos , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo , Peixe-Zebra/metabolismo
4.
J. bras. psiquiatr ; 71(1): 16-23, jan.-mar. 2022. tab
Artigo em Inglês | LILACS | ID: biblio-1365058

RESUMO

OBJECTIVE: Evaluate the association between levels of mindfulness and sociodemographic characteristics and pattern of drug use of individuals seeking treatment in a University Service Specialized in Substance Use Disorders. METHODS: This is a cross-sectional study with 164 individuals over 18 years of age seeking treatment for the use of psychoactive substances in the June 2018-December 2019 period, using a questionnaire for sociodemographic data, the Mindful Attention Awareness Scale (MAAS) self- -reporting instrument, and the Alcohol, Smoking, and Substance Involvement Screening Test. RESULTS: An association was found between low levels of mindfulness mainly with the individual risk of being a medium/high-risk user of sedative-hypnotic drugs (p = 0.020). A borderline association was also found between MAAS and the risk of the individual being a medium/high risk of alcohol (p = 0.053) and with a more severe pattern of substance use (p = 0.065). CONCLUSION: Individuals seeking treatment for substance use presented impairments in the attentional aspect of mindfulness and levels of mindfulness seem to protect against behaviors related to substance use, especially against the use of high/ moderate risk of sedative-hypnotics.


OBJETIVO: Avaliar a associação entre níveis de mindfulness e características sociodemográficas e padrão do uso de drogas de indivíduos que buscam tratamento em Serviço Universitário Especializado em Transtorno por Uso de Substâncias. MÉTODOS: Estudo de corte transversal de 164 indivíduos acima de 18 anos que buscavam tratamento para uso de substâncias psicoativas no período de junho de 2018 a dezembro de 2019, utilizando questionário para dados sociodemográficos, o instrumento de autorrelato Mindful Attention Awareness Scale (MAAS) e o Alcohol, Smoking and Substance Involvement Screening Test. RESULTADOS: Foi encontrada associação entre baixos níveis de mindfulness principalmente com o risco de o indivíduo ser usuário de médio/alto risco de sedativos-hipnóticos (p = 0,020). Também foi encontrada associação limítrofe entre MAAS com risco de o indivíduo ser usuário de médio/alto risco de álcool (p = 0,053) e com padrão mais grave de uso de substâncias (p = 0,065). CONCLUSÃO: Indivíduos que buscavam tratamento para uso de substâncias apresentaram prejuízos no aspecto atencional de mindfulness, e níveis de mindfulness parecem proteger contra comportamentos relacionados ao uso de substâncias, principalmente contra o uso de alto/moderado risco de sedativos-hipnóticos.


Assuntos
Humanos , Masculino , Feminino , Adulto , Terapia Cognitivo-Comportamental/métodos , Transtornos Relacionados ao Uso de Substâncias/psicologia , Transtornos Relacionados ao Uso de Substâncias/terapia , Atenção Plena , Benzodiazepinonas/farmacologia , Estudos Transversais , Inquéritos e Questionários , Estudos de Coortes
5.
J Immunol ; 208(5): 1115-1127, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35165166

RESUMO

Purinergic signaling plays a major role in T cell activation leading to IL-2 production and proliferation. However, it is unclear whether purinergic signaling contributes to the differentiation and activation of effector T cells. In this study, we found that the purinergic receptor P2X4 was associated with human Th17 cells but not with Th1 cells. Inhibition of P2X4 receptor with the specific antagonist 5-BDBD and small interfering RNA inhibited the development of Th17 cells and the production of IL-17 by effector Th17 cells stimulated via the CD3/CD28 pathway. Our results showed that P2X4 was required for the expression of retinoic acid-related orphan receptor C, which is the master regulator of Th17 cells. In contrast, inhibition of P2X4 receptor had no effect on Th1 cells and on the production of IFN-γ and it did not affect the expression of the transcription factor T-bet (T-box transcription factor). Furthermore, inhibition of P2X4 receptor reduced the production of IL-17 but not of IFN-γ by effector/memory CD4+ T cells isolated from patients with rheumatoid arthritis. In contrast to P2X4, inhibition of P2X7 and P2Y11 receptors had no effects on Th17 and Th1 cell activation. Finally, treatment with the P2X4 receptor antagonist 5-BDBD reduced the severity of collagen-induced arthritis in mice by inhibiting Th17 cell expansion and activation. Our findings provide novel insights into the role of purinergic signaling in T cell activation and identify a critical role for the purinergic receptor P2X4 in Th17 activation and in autoimmune arthritis.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/imunologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X4/metabolismo , Células Th17/imunologia , Animais , Artrite Reumatoide/patologia , Benzodiazepinonas/farmacologia , Diferenciação Celular/imunologia , Células Cultivadas , Humanos , Memória Imunológica/imunologia , Interferon gama/biossíntese , Interleucina-17/biossíntese , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Receptores Nucleares Órfãos , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Purinérgicos P2X4/genética , Proteínas com Domínio T/biossíntese , Células Th1/citologia , Células Th1/imunologia , Células Th17/citologia
6.
Mol Pharmacol ; 101(1): 33-44, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718224

RESUMO

The P2X4 receptor is a ligand-gated ion channel activated by extracellular ATP. P2X4 activity is associated with neuropathic pain, vasodilation, and pulmonary secretion and is therefore of therapeutic interest. The structure-activity relationship of P2X4 antagonists is poorly understood. Here we elucidate the structure-activity of 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) at human P2X4 by combining pharmacology, electrophysiology, molecular modeling, and medicinal chemistry. 5-BDBD antagonized P2X4 in a noncompetitive manner but lacked effect at human P2X2. Molecular modeling and site-directed mutagenesis suggested an allosteric binding site for 5-BDBD located between two subunits in the body region of P2X4, with M109, F178, Y300, and I312 on one subunit and R301 on the neighboring subunit as key residues involved in antagonist binding. The bromine group of 5-BDBD was redundant for the antagonist activity of 5-BDBD, although an interaction between the carbonyl group of 5-BDBD and R301 in P2X4 was associated with 5-BDBD activity. 5-BDBD could inhibit the closed channel but poorly inhibited the channel in the open/desensitizing state. We hypothesize that this is due to constriction of the allosteric site after transition from closed to open channel state. We propose that M109, F178, Y300, R301, and I312 are key residues for 5-BDBD binding; provide a structural explanation of how they contribute to 5-BDBD antagonism; and highlight that the limited action of 5-BDBD on open versus closed channels is due to a conformational change in the allosteric site. SIGNIFICANCE STATEMENT: Activity of P2X4 receptor is associated with neuropathic pain, inflammation, and vasodilatation. Molecular information regarding small-molecule interaction with P2X4 is very limited. Here, this study provides a structural explanation for the action of the small-molecule antagonist 5-BDBD at the human P2X4 receptor.


Assuntos
Benzodiazepinonas/química , Benzodiazepinonas/metabolismo , Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/metabolismo , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Benzodiazepinonas/farmacologia , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Antagonistas do Receptor Purinérgico P2X/farmacologia
7.
J Pathol ; 256(2): 149-163, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34652816

RESUMO

Prostate cancer (PCa) remains a leading cause of cancer-related deaths in American men and treatment options for metastatic PCa are limited. There is a critical need to identify new mechanisms that contribute to PCa progression, that distinguish benign from lethal disease, and that have potential for therapeutic targeting. P2X4 belongs to the P2 purinergic receptor family that is commonly upregulated in cancer and is associated with poorer outcomes. We observed P2X4 protein expression primarily in epithelial cells of the prostate, a subset of CD66+ neutrophils, and most CD68+ macrophages. Our analysis of tissue microarrays representing 491 PCa cases demonstrated significantly elevated P2X4 expression in cancer- compared with benign-tissue spots, in prostatic intraepithelial neoplasia, and in PCa with ERG positivity or with PTEN loss. High-level P2X4 expression in benign tissues was likewise associated with the development of metastasis after radical prostatectomy. Treatment with the P2X4-specific agonist cytidine 5'-triphosphate (CTP) increased Transwell migration and invasion of PC3, DU145, and CWR22Rv1 PCa cells. The P2X4 antagonist 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) resulted in a dose-dependent decrease in viability of PC3, DU145, LNCaP, CWR22Rv1, TRAMP-C2, Myc-CaP, BMPC1, and BMPC2 cells and decreased DU145 cell migration and invasion. Knockdown of P2X4 attenuated growth, migration, and invasion of PCa cells. Finally, knockdown of P2X4 in Myc-CaP cells resulted in significantly attenuated subcutaneous allograft growth in FVB/NJ mice. Collectively, these data strongly support a role for the P2X4 purinergic receptor in PCa aggressiveness and identify P2X4 as a candidate for therapeutic targeting. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/farmacologia , Benzodiazepinonas/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X4/efeitos dos fármacos , Animais , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Terapia de Alvo Molecular , Invasividade Neoplásica , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Transdução de Sinais , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Med Chem ; 64(24): 17901-17919, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34845907

RESUMO

Due to the neuroprotective role of the Na+/Ca2+ exchanger (NCX) isoforms NCX1 and NCX3, we synthesized novel benzodiazepinone derivatives of the unique NCX activator Neurounina-1, named compounds 1-19. The derivatives are characterized by a benzodiazepinonic nucleus linked to five- or six-membered cyclic amines via a methylene, ethylene, or acetyl spacer. The compounds have been screened on NCX1/NCX3 isoform activities by a high-throughput screening approach, and the most promising were characterized by patch-clamp electrophysiology and Fura-2AM video imaging. We identified two novel modulators of NCX: compound 4, inhibiting NCX1 reverse mode, and compound 14, enhancing NCX1 and NCX3 activity. Compound 1 displayed neuroprotection in two preclinical models of brain ischemia. The analysis of the conformational and steric features led to the identification of the molecular volume required for selective NCX1 activation for mixed NCX1/NCX3 activation or for NCX1 inhibition, providing the first prototypal model for the design of optimized isoform modulators.


Assuntos
Benzodiazepinonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Isoformas de Proteínas/antagonistas & inibidores , Pirrolidinas/química , Trocador de Sódio e Cálcio/antagonistas & inibidores , Animais , Benzodiazepinonas/química , Desenho de Fármacos , Isoformas de Proteínas/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Relação Estrutura-Atividade
9.
Neurol Res ; 43(12): 1107-1115, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34461817

RESUMO

OBJECTIVE: To investigate the histopathological effects of a peripheral benzodiazepine receptor agonist (Ro5-4864) on epidural fibrosis (EF) in an experimental study model (post-laminectomy) in rats. METHODS: A total of 32 albino Wistar rats were randomly divided into four equal groups (n = 8). In Group 1, no treatment was applied after laminectomy (control group). In Group 2, hemostasis was achieved after Laminectomy, and the surgical procedure was terminated by placing a 2-mm absorbable gelatin sponge dipped in saline into the epidural space. In Group 3, low-dose (4 mg/kg) Ro5-4864 was administered 30 minutes before the surgery. In Group 4, high-dose (8 mg/kg) Ro5-4864 was administered 30 minutes before the surgery. A histopathological examination was performed to evaluate arachnoidal invasion and EF. RESULTS: Our data revealed the EF was significantly reduced in rats treated with high-dose Ro5-4864 (Group 4) compared to the control and saline-soaked Spongostan groups (p = 0.000 and p = 0.006, respectively). There was no significant difference between the groups treated with high- and low-dose Ro5-4864. Arachnoidal invasion was not seen in any of the rats in the high-dose R05-4864 group. However, the arachnoidal invasion results did not significantly differ between the study groups (p = 0.052 = 0.05). CONCLUSIONS: Our study showed that Ro5-4864 could be effective in reducing EF in rats after.


Assuntos
Benzodiazepinonas/farmacologia , Espaço Epidural/patologia , Laminectomia/efeitos adversos , Aderências Teciduais/prevenção & controle , Animais , Modelos Animais de Doenças , Síndrome Pós-Laminectomia/prevenção & controle , Feminino , Ratos , Ratos Wistar
10.
J Neuroinflammation ; 18(1): 184, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425835

RESUMO

BACKGROUND: White matter injury (WMI) is a major neuropathological event associated with intracerebral hemorrhage (ICH). P2X purinoreceptor 4 (P2X4R) is a member of the P2X purine receptor family, which plays a crucial role in regulating WMI and neuroinflammation in central nervous system (CNS) diseases. Our study investigated the role of P2X4R in the WMI and the inflammatory response in mice, as well as the possible mechanism of action after ICH. METHODS: ICH was induced in mice via collagenase injection. Mice were treated with 5-BDBD and ANA-12 to inhibit P2X4R and tropomyosin-related kinase receptor B (TrkB), respectively. Immunostaining and quantitative polymerase chain reaction (qPCR) were performed to detect microglial phenotypes after the inhibition of P2X4R. Western blots (WB) and immunostaining were used to examine WMI and the underlying molecular mechanisms. Cylinder, corner turn, wire hanging, and forelimb placement tests were conducted to evaluate neurobehavioral function. RESULTS: After ICH, the protein levels of P2X4R were upregulated, especially on day 7 after ICH, and were mainly located in the microglia. The inhibition of P2X4R via 5-BDBD promoted neurofunctional recovery after ICH as well as the transformation of the pro-inflammatory microglia induced by ICH into an anti-inflammatory phenotype, and attenuated ICH-induced WMI. Furthermore, we found that TrkB blockage can reverse the protective effects of WMI as well as neuroprotection after 5-BDBD treatment. This result indicates that P2X4R plays a crucial role in regulating WMI and neuroinflammation and that P2X4R inhibition may benefit patients with ICH. CONCLUSIONS: Our results demonstrated that P2X4R contributes to WMI by polarizing microglia into a pro-inflammatory phenotype after ICH. Furthermore, the inhibition of P2X4R promoted pro-inflammatory microglia polarization into an anti-inflammatory phenotype, enhanced brain-derived neurotrophic factor (BDNF) production, and through the BDNF/TrkB pathway, attenuated WMI and improved neurological function. Therefore, the regulation of P2X4R activation may be beneficial for the reducing of ICH-induced brain injury.


Assuntos
Hemorragia Cerebral/patologia , Microglia/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Substância Branca/efeitos dos fármacos , Animais , Benzodiazepinonas/farmacologia , Hemorragia Cerebral/metabolismo , Modelos Animais de Doenças , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo , Microglia/patologia , Proteínas Tirosina Quinases/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia
11.
Front Cell Infect Microbiol ; 11: 686035, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350133

RESUMO

The failure of highly active antiretroviral therapy (HAART) has been largely responsible for the existence of latent human immunodeficiency virus type 1 (HIV-1) reservoirs. The "shock and kill" strategy was confirmed to reactivate HIV-1 latent reservoirs by latency-reversing agents (LRAs) for accelerated HIV-1 clearance. However, a single LRA might be insufficient to induce HIV-1 reactivation from latency due to the complexity of the multiple signaling regulatory pathways that establish the HIV-1 latent reservoir. Therefore, combinations of LRAs or dual-mechanism LRAs are urgently needed to purge the latent reservoirs. We demonstrate here for the first time that a dual-target inhibitor with a specific suppressive effect on both BRD4 and TIP60, CPI-637, could reactivate latent HIV-1 in vitro by permitting Tat to bind positive transcription elongation factor b (P-TEFb) and assembling Tat-super-elongation complex (SEC) formation. In addition, CPI-637-mediated TIP60 downregulation further stimulated BRD4 dissociation from the HIV-1 long terminal repeat (LTR) promoter, allowing Tat to more effectively bind P-TEFb compared to BRD4 inhibition alone. Much more importantly, CPI-637 exerted a potent synergistic effect but alleviated global T cell activation and blocked viral spread to uninfected bystander CD4+ T cells with minimal cytotoxicity. Our results indicate that CPI-637 opens up the prospect of novel dual-target inhibitors for antagonizing HIV-1 latency and deserves further investigation for development as a promising LRA with a "shock and kill" strategy.


Assuntos
Benzodiazepinonas/farmacologia , Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Proteínas de Ciclo Celular/antagonistas & inibidores , Infecções por HIV/tratamento farmacológico , Humanos , Lisina Acetiltransferase 5/antagonistas & inibidores , Proteínas Nucleares , Fatores de Transcrição/antagonistas & inibidores , Ativação Viral , Latência Viral
12.
Neurobiol Dis ; 159: 105480, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34411705

RESUMO

Imbalance in cellular ionic homeostasis is a hallmark of several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS). Sodium-calcium exchanger (NCX) is a membrane antiporter that, operating in a bidirectional way, couples the exchange of Ca2+ and Na + ions in neurons and glial cells, thus controlling the intracellular homeostasis of these ions. Among the three NCX genes, NCX1 and NCX2 are widely expressed within the CNS, while NCX3 is present only in skeletal muscles and at lower levels of expression in selected brain regions. ALS mice showed a reduction in the expression and activity of NCX1 and NCX2 consistent with disease progression, therefore we aimed to investigate their role in ALS pathophysiology. Notably, we demonstrated that the pharmacological activation of NCX1 and NCX2 by the prolonged treatment of SOD1G93A mice with the newly synthesized compound neurounina: (1) prevented the reduction in NCX activity observed in spinal cord; (2) preserved motor neurons survival in the ventral spinal horn of SOD1G93A mice; (3) prevented the spinal cord accumulation of misfolded SOD1; (4) reduced astroglia and microglia activation and spared the resident microglia cells in the spinal cord; (5) improved the lifespan and mitigated motor symptoms of ALS mice. The present study highlights the significant role of NCX1 and NCX2 in the pathophysiology of this neurodegenerative disorder and paves the way for the design of a new pharmacological approach for ALS.


Assuntos
Esclerose Amiotrófica Lateral/metabolismo , Benzodiazepinonas/farmacologia , Neurônios Motores/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo , Fármacos Neuroprotetores/farmacologia , Pirrolidinas/farmacologia , Trocador de Sódio e Cálcio/agonistas , Medula Espinal/efeitos dos fármacos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Esclerose Amiotrófica Lateral/fisiopatologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Humanos , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/fisiopatologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Taxa de Sobrevida
13.
J Med Chem ; 64(14): 10102-10123, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34255515

RESUMO

CREBBP (CBP/KAT3A) and its paralogue EP300 (KAT3B) are lysine acetyltransferases (KATs) that are essential for human development. They each comprise 10 domains through which they interact with >400 proteins, making them important transcriptional co-activators and key nodes in the human protein-protein interactome. The bromodomains of CREBBP and EP300 enable the binding of acetylated lysine residues from histones and a number of other important proteins, including p53, p73, E2F, and GATA1. Here, we report a work to develop a high-affinity, small-molecule ligand for the CREBBP and EP300 bromodomains [(-)-OXFBD05] that shows >100-fold selectivity over a representative member of the BET bromodomains, BRD4(1). Cellular studies using this ligand demonstrate that the inhibition of the CREBBP/EP300 bromodomain in HCT116 colon cancer cells results in lowered levels of c-Myc and a reduction in H3K18 and H3K27 acetylation. In hypoxia (<0.1% O2), the inhibition of the CREBBP/EP300 bromodomain results in the enhanced stabilization of HIF-1α.


Assuntos
Benzodiazepinonas/farmacologia , Proteína de Ligação a CREB/antagonistas & inibidores , Desenho de Fármacos , Proteína p300 Associada a E1A/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Benzodiazepinonas/síntese química , Benzodiazepinonas/química , Proteína de Ligação a CREB/metabolismo , Relação Dose-Resposta a Droga , Proteína p300 Associada a E1A/metabolismo , Células HCT116 , Humanos , Ligantes , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
14.
Bioorg Chem ; 114: 105081, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34153811

RESUMO

Selective inhibition of histone deacetylase 6 (HDAC6) has been emerged as a promising approach to cancer treatment. As a pivotal strategy for drug discovery,molecular hybridization was introduced in this study and a series of pyrrolo[2,1-c][1,4] benzodiazepine-3,11-diones (PBDs) based hydroxamic acids was rationally designed and synthesizedas novel selective HDAC6 inhibitors. Preliminary in vitro enzyme inhibition assay and structure-activity relationship (SAR) discussion confirmed our design strategy and met the expectation. Several of the compounds showed high potent against HDAC6 enzyme in vitro, and compound A7 with a long aliphatic linker was revealed to have the similar activity as the positive control tubastatin A. Further in vitro characterization of A7 demonstrates the metastasis inhibitory potency in MDA-MB-231 cell line and western blotting showed that A7 could induce the upregulation of Ac-α-tubulin, but not induce the excessive acetylation of histone H3, which indicated that the compound had HDAC6 targeting effect in MDA-MB-231 cells. In vivo study revealed that compound A7 has satisfactory inhibitory effects onliver and lung metastasis of breast cancer in mice. Molecular docking released that A7 could fit well with the receptor and interact with some key residues, which lays a foundation for further structural modifications to elucidate the interaction mode between compounds and target protein. This pharmacological investigation workflow provided a reasonable and reference methodto examine the pharmacological effects of inhibiting HDAC6 with a single molecule, either in vitro or in vivo. All of these results suggested that A7 is a promising lead compound that could lead to the further development of novel selective HDAC6 inhibitors for the treatment of tumor metastasis.


Assuntos
Antineoplásicos/farmacologia , Benzodiazepinonas/farmacologia , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzodiazepinonas/síntese química , Benzodiazepinonas/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
Cancer Sci ; 112(8): 2984-2992, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34107132

RESUMO

Delta-like canonical Notch ligand 3 (DLL3) is a member of the Delta/Serrate/Lag2 (DSL) Notch receptor ligand family and plays a crucial role in Notch signaling, which influences various cellular processes including differentiation, proliferation, survival, and apoptosis. DLL3 is expressed throughout the presomitic mesoderm and is localized to the rostral somatic compartments; mutations in DLL3 induce skeletal abnormalities such as spondylocostal dysostosis. Recently, DLL3 has attracted interest as a novel molecular target due to its high expression in neuroendocrine carcinoma of the lung. Moreover, a DLL3-targeting Ab-drug conjugate, rovalpituzumab tesirine (ROVA-T), has been developed as a new treatment with proven antitumor activity. However, the development of ROVA-T was suspended because of shorter overall survival compared to topotecan, the second-line standard treatment. Thus, several studies on the mechanism and function of DLL3 in several malignancies are underway to find a new strategy for targeting DLL3. In this review, we discuss the roles of DLL3 in various malignancies and the future perspectives of DLL3-related research, especially as a therapeutic target.


Assuntos
Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Benzodiazepinonas/farmacologia , Benzodiazepinonas/uso terapêutico , Ensaios Clínicos como Assunto , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Masculino , Proteínas de Membrana/efeitos dos fármacos , Terapia de Alvo Molecular , Mutação , Neoplasias/genética
16.
Purinergic Signal ; 17(3): 425-438, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33966147

RESUMO

Ischemic stroke is the most serious disease that harms human beings. In principle, its treatment is to restore blood flow supply as soon as possible. However, after the blood flow is restored, it will lead to secondary brain injury, that is, ischemia-reperfusion injury. The mechanism of ischemia-reperfusion injury is very complicated. This study showed that P2X4 receptors in the pyramidal neurons of rat hippocampus were significantly upregulated in the early stage of ischemia-reperfusion injury. Neurons with high expression of P2X4 receptors are neurons that are undergoing apoptosis. Intraventricular injection of the P2X4 receptor antagonist 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) and PSB-12062 can partially block neuronal apoptosis, to promote the survival of neurons, indicating that ATP through P2X4 receptors is involved in the process of cerebral ischemia-reperfusion injury. Therefore, identifying the mechanism of neuronal degeneration induced by extracellular ATP via P2X4 receptors after ischemia-reperfusion will likely find new targets for the treatment of ischemia-reperfusion injury, and will provide a useful theoretical basis for the treatment of ischemia-reperfusion injury.


Assuntos
Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/metabolismo , Células Piramidais/metabolismo , Receptores Purinérgicos P2X4/biossíntese , Traumatismo por Reperfusão/metabolismo , Animais , Benzodiazepinonas/farmacologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Região CA1 Hipocampal/efeitos dos fármacos , Expressão Gênica , Masculino , Antagonistas do Receptor Purinérgico P2X/farmacologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X4/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
17.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799869

RESUMO

The possible cardioprotective effects of translocator protein (TSPO) modulation with its ligand 4'-Chlorodiazepam (4'-ClDzp) in isoprenaline (ISO)-induced rat myocardial infarction (MI) were evaluated, alone or in the presence of L-NAME. Wistar albino male rats (b.w. 200-250 g, age 6-8 weeks) were divided into 4 groups (10 per group, total number N = 40), and certain substances were applied: 1. ISO 85 mg/kg b.w. (twice), 2. ISO 85 mg/kg b.w. (twice) + L-NAME 50 mg/kg b.w., 3. ISO 85 mg/kg b.w. (twice) + 4'-ClDzp 0.5 mg/kg b.w., 4. ISO 85 mg/kg b.w. (twice) + 4'-ClDzp 0.5 mg/kg b.w. + L-NAME 50 mg/kg b.w. Blood and cardiac tissue were sampled for myocardial injury and other biochemical markers, cardiac oxidative stress, and for histopathological evaluation. The reduction of serum levels of high-sensitive cardiac troponin T hs cTnT and tumor necrosis factor alpha (TNF-α), then significantly decreased levels of serum homocysteine Hcy, urea, and creatinine, and decreased levels of myocardial injury enzymes activities superoxide dismutase (SOD) and glutathione peroxidase (GPx) as well as lower grades of cardiac ischemic changes were demonstrated in ISO-induced MI treated with 4'-ClDzp. It has been detected that co-treatment with 4'-ClDzp + L-NAME changed the number of registered parameters in comparison to 4'-ClDzp group, indicating that NO (nitric oxide) should be important in the effects of 4'-ClDzp.


Assuntos
Benzodiazepinonas/farmacologia , Proteínas de Transporte/metabolismo , Infarto do Miocárdio/prevenção & controle , NG-Nitroarginina Metil Éster/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Inibidores Enzimáticos/farmacologia , Glutationa Peroxidase/metabolismo , Homocisteína/sangue , Isoproterenol , Masculino , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/metabolismo , Miocárdio/enzimologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Ratos Wistar , Superóxido Dismutase/metabolismo , Troponina T/sangue , Fator de Necrose Tumoral alfa/sangue
18.
Eur J Med Chem ; 213: 113159, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33571911

RESUMO

The family of human muscarinic acetylcholine receptors (MRs) is characterized by a high sequence homology among the five subtypes (M1R-M5R), being the reason for a lack of subtype selective MR ligands. In continuation of our work on dualsteric dibenzodiazepinone-type M2R antagonists, a series of M2R ligands containing a dibenzodiazepinone pharmacophore linked to small basic peptides was synthesized (64 compounds). The linker moiety was varied with respect to length, number of basic nitrogens (0-2) and flexibility. Besides proteinogenic basic amino acids (Lys, Arg), shorter homologues of Lys and Arg, containing three and two methylene groups, respectively, as well as D-configured amino acids were incorporated. The type of linker had a marked impact on M2R affinity and also effected M2R selectivity. In contrast, the structure of the basic peptide rather determined M2R selectivity than M2R affinity. For example, the most M2R selective compound (UR-CG188, 89) with picomolar M2R affinity (pKi 9.60), exhibited a higher M2R selectivity (ratio of Ki M1R/M2R/M3R/M4R/M5R: 110:1:5200:55:2300) compared to the vast majority of reported M2R preferring MR ligands. For selected ligands, M2R antagonism was confirmed in a M2R miniG protein recruitment assay.


Assuntos
Aminoácidos/antagonistas & inibidores , Benzodiazepinonas/farmacologia , Antagonistas Muscarínicos/farmacologia , Peptídeos/farmacologia , Receptor Muscarínico M2/antagonistas & inibidores , Aminoácidos/metabolismo , Animais , Benzodiazepinonas/síntese química , Benzodiazepinonas/química , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Antagonistas Muscarínicos/síntese química , Antagonistas Muscarínicos/química , Peptídeos/química , Receptor Muscarínico M2/metabolismo , Relação Estrutura-Atividade
19.
J Med Chem ; 64(7): 3697-3706, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33591753

RESUMO

Protein arginine methyltransferase 6 (PRMT6) catalyzes monomethylation and asymmetric dimethylation of arginine residues in various proteins, plays important roles in biological processes, and is associated with multiple cancers. To date, a highly selective PRMT6 inhibitor has not been reported. Here we report the discovery and characterization of a first-in-class, highly selective allosteric inhibitor of PRMT6, (R)-2 (SGC6870). (R)-2 is a potent PRMT6 inhibitor (IC50 = 77 ± 6 nM) with outstanding selectivity for PRMT6 over a broad panel of other methyltransferases and nonepigenetic targets. Notably, the crystal structure of the PRMT6-(R)-2 complex and kinetic studies revealed (R)-2 binds a unique, induced allosteric pocket. Additionally, (R)-2 engages PRMT6 and potently inhibits its methyltransferase activity in cells. Moreover, (R)-2's enantiomer, (S)-2 (SGC6870N), is inactive against PRMT6 and can be utilized as a negative control. Collectively, (R)-2 is a well-characterized PRMT6 chemical probe and a valuable tool for further investigating PRMT6 functions in health and disease.


Assuntos
Benzodiazepinonas/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Regulação Alostérica , Sítio Alostérico , Benzodiazepinonas/síntese química , Benzodiazepinonas/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteína-Arginina N-Metiltransferases/metabolismo , Estereoisomerismo
20.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260618

RESUMO

Translocator protein (TSPO) and voltage dependent anion channels (VDAC) are two proteins forming a macromolecular complex in the outer mitochondrial membrane that is involved in pleiotropic functions. Specifically, these proteins were described to regulate the clearance of damaged mitochondria by selective mitophagy in non-erythroid immortalized cell lines. Although it is well established that erythroblast maturation in mammals depends on organelle clearance, less is known about mechanisms regulating this clearance throughout terminal erythropoiesis. Here, we studied the effect of TSPO1 downregulation and the action of Ro5-4864, a drug ligand known to bind to the TSPO/VDAC complex interface, in ex vivo human terminal erythropoiesis. We found that both treatments delay mitochondrial clearance, a process associated with reduced levels of the PINK1 protein, which is a key protein triggering canonical mitophagy. We also observed that TSPO1 downregulation blocks erythroblast maturation at the orthochromatic stage, decreases the enucleation rate, and increases cell death. Interestingly, TSPO1 downregulation does not modify reactive oxygen species (ROS) production nor intracellular adenosine triphosphate (ATP) levels. Ro5-4864 treatment recapitulates these phenotypes, strongly suggesting an active role of the TSPO/VDAC complex in selective mitophagy throughout human erythropoiesis. The present study links the function of the TSPO/VDAC complex to the PINK1/Parkin-dependent mitophagy induction during terminal erythropoiesis, leading to the proper completion of erythroid maturation.


Assuntos
Núcleo Celular/metabolismo , Regulação para Baixo , Eritropoese , Mitocôndrias/metabolismo , Mitofagia , Receptores de GABA/metabolismo , Benzodiazepinonas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Humanos , Cinética , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Fenótipo , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...